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LIFTING OF DISPERSE PARTICLES FROM A CAVITY BEHIND

THE FRONT OF AN UNSTEADY SHOCK WAVE

WITH A TRIANGULAR VELOCITY PROFILE

UDC 532.529T. R. Amanbaev

The gas flow in plane shock waves slipping along an impermeable surface with a rectangular cavity
where solid disperse particles are suspended is considered numerically. The motion of the gas and
particles (gas suspension) is modeled by equations of mechanics of multiphase media. Some laws of
the behavior of the dusty cloud in the cavity are established for the case of wave interaction with the
cavity.
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The gas flow around cavities is considered in a number of theoretical and experimental works (see, e.g., [1–4]).
Unsteady flows in rectangular cavities with a supersonic external flow are considered in [1] within the framework
of the ideal compressible gas model. The Euler equations are integrated by Godunov’s finite-difference method for
Mach numbers M = 2–5 and different width-to-depth ratios of the cavity. The results obtained are compared with
available numerical and experimental data. A formula is proposed for the frequency of flow-rate fluctuations in the
cavity, depending on the free-stream Mach number and cavity geometry. Unsteady interaction of the shock wave
and cocurrent flow with a cavity is experimentally studied in [2]. Based on the analysis of Schlieren and interference
patterns and pressure measurements by piezogauges, propagation of a plane shock wave over a shallow rectangular
cavity is considered for Mach numbers M = 1.2–5.0. For M > 4, spontaneous excitation of oscillations occurs inside
the cavity, which is caused by mass exchange between the cavity and external flow (there are no oscillations for
M < 4).

A series of calculations of a supersonic (M = 1.03–1.30) viscous compressible gas flow around cavities of
various depths was performed in [3] on the basis of kinetically correlated difference schemes with a correction.
A two-dimensional formulation of the problem with a laminar flow regime was considered. Flows in open and
closed cavities were studied. Heat fluxes on the bottom and walls of the cavity were calculated. The flow around a
cylindrical cavity on an axisymmetric body was experimentally examined in [4] within the range of Mach numbers
M = 0.60–1.18. The effect of the Mach number in passing from subsonic to supersonic flow velocities and the relative
aspect ratio of the cavity on flow regimes was considered, including flows with open and closed separation regions.
The supersonic turbulent gas flow around rectangular cavities was considered in [5, 6]. The flow in the cavity was
simulated by two-dimensional Navier–Stokes equations. In [5], these equations were solved by the MacCormack
scheme. It was shown that passive addition of the gas into the cavity can change the flow pattern, transforming a
closed cavity into an open one. The flow characteristics and pressure fluctuations depending on the Mach number,
relative width of the cavity, and boundary-layer thickness were considered theoretically and experimentally in [6].
The observed disagreement of calculated and experimental values of pressure is explained by the three-dimensional
character of the flow in experiments.

At the same time, unsteady gas flows around cavities in shock waves with a triangular velocity profile have
not been adequately studied. Apparently, the reason is that unsteady shock waves with a triangular velocity profile
refer to the so-called explosive or pulsed type of waves, which are difficult to obtain in experiments.
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The present paper deals with numerical simulation of interaction of unsteady shock waves with a cavity
containing a cloud of disperse particles.

Equations of Motion and Laws of Phase Interaction. We use the basic assumptions of mechanics of
multiphase media [7]. In addition, we assume that the particles are spherical, monodisperse, and incompressible,
do not collide with each other, are not split into fragments, and have a constant heat capacity. In specifying the
law of particle interaction with the carrier medium, we neglect unsteady forces of virtual mass and buoyancy and
Basse forces (this assumption is valid, for instance, if the density of particles is much higher than the density of the
gas [7]). The gas is assumed to be ideal and calorically perfect (effects of viscosity and thermal conductivity are
manifested only in processes of gas–particle interaction).

Within the adopted assumptions, the equations of plane motion of a two-phase gas suspension of particles
have the form [7]
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The subscripts 1 and 2 here refer to parameters of the carrier and disperse phases, respectively, ρi, ρ0
i , vi, ei, Ei,

Ti, αi, and ci are the reduced and true (marked by the superscript 0) densities, velocity vectors, (ui and vi are their
components along the x and y axes), internal and total energies, and also temperatures, volume fractions, and heat
capacities of the gas and particles, p and R1 are the gas pressure and the gas constant, n and d are the number of
particles in a unit volume of the mixture and their diameter, f and q are the force of aerodynamic interaction of
the gas and particle (fx and fy are its components along the x and y axes) and intensity of their heat exchange.

The laws of interphase force and thermal interaction are set in the form

f = (πd2/8)ρ0
1Cµ|v1 − v2|(v1 − v2), q = πdλ1Nu1(T1 − T2),

where Cµ is the aerodynamic drag coefficient of the particle, Nu1 is the Nusselt number, and λ1 is the thermal
conductivity of the gas. For Cµ and Nu1, it is usually recommended to use the following semi-empirical relations,
which are valid in a wide range of governing parameters [7, 8]:

Cµ = [1 + exp (−0.423/M4.63
12 )](24/Re12 +4.4/Re0.5

12 +0.42),

Nu1 = 2 + 0.6 Re0.5
12 Pr0.33

1 , Re12 = ρ0
1d|v1 − v2|/µ1, Pr1 = cp1µ1/λ1,

M12 = |v1 − v2|/a1, a1 =
√
γp/ρ0

1.

Here Re12, Pr1, and M12 are the Reynolds, Prandtl, and Mach numbers, µ1 and cp1 are the viscosity and heat
capacity (at constant pressure) of the gas, γ and a1 are the ratio of specific heats and local velocity of sound in the
carrier phase.
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Fig. 1. Diagram of the problem corresponding to the initial time: P is the
undisturbed air, W is the cavity filled by a mixture of air and particles, S is
the disturbed zone, and f is the shock-wave front.

Initial and Boundary Conditions. The gas parameters ahead of the shock-wave front (marked by the
subscript 0) and behind it (marked by the subscript f) are related by the Rankine–Hugoniot equations

ρ1f/ρ10 = (γ + 1)M2/[2 + (γ − 1)M2],

u1f/a10 = 2(M− 1/M)/(γ + 1), pf/p0 = (2γM2 − γ + 1)/(γ + 1),

where M is the Mach number (intensity) of the leading jump (front) of the shock wave. We set the distribution
of parameters of the disturbed gas behind the wave front at the initial time t = 0, assuming that the velocity
profile behind the shock wave is a straight line and the state of the medium is isentropic [7]. Such a distribution
of parameters corresponds to a simple Riemann wave at the time of formation of the front shock (discontinuity).
Thus, behind the shock-wave front, we have

u1 = u1fx/xf , v1 = 0, p = pfξ
γ , ρ1 = ρ1fξ, (x, y) ∈ S,

v1 = 0, p = p0, ρ1 = ρ10, ρ2 = 0, (x, y) ∈ P,

v1,v2 = 0, p = p0, ρ0
1 = ρ10, ρ2 = ρ20, T2 = T20, (x, y) ∈W,

S = {x < xf , y > h}, P = {x > xf , y > h}, W = {x1 < x < x2, 0 6 y 6 h},

ξ = [1− (γ − 1)(u1f − u1)/(2a1f )]2/(γ−1).

Here h is the depth of the cavity, xf , x1, and x2 are the coordinates (along the x axis) of the wave front and the
front and back boundaries of the cavity, S is the region of the disturbed gas behind the wave, P is the zone above
the cavity, and W is the region occupied by the cavity. The scheme of the problem corresponding to the initial time
is shown in Fig. 1. We accept the no-slip condition for the gas at the left rigid boundary and on the solid surface and
the condition of free outflow for particles, which simulates their deposition on the surface in an absolutely inelastic
collision.

Some Calculation Results. The problem posed was solved by a modified method of coarse particles
[9, 10]. The calculations were performed by a program developed in the MATLAB environment. The accuracy of
calculations was controlled by double recalculation with halved steps in time and coordinates. The optimal step of
calculations was established by criteria of stability and necessary accuracy of calculating the processes of interphase
interaction.

In addition, to obtain a more detailed flow pattern in regions with strong changes in the medium parameters,
where scheme viscosity could be significant, calculations with a grid refined directly inside the cavity and above it
were performed. The calculations showed that, for the refinement parameter r = ∆x/∆xw = ∆y/∆yw = 2.4 (∆xw
and ∆yw are the grid steps in the x and y directions in the regions W and P ; ∆x and ∆y are the steps in the
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Fig. 2. Field of the velocity vector of the gas for t = 0.25 (a), 0.5 (b), 1 (c), and 2 msec (d).

remaining regions of the computational domain), the flow pattern does not experience any significant changes (the
difference in parameters was smaller than 1–2%).

Below, we give an example of calculations of the flow behind the shock-wave front with intensity characterized
by the Mach number of the leading front M = 4.2 and initial pulse length of 0.45 m. The depth h and width l

of the cavity with the disperse phase were 0.13 m. At the initial time, the shock-wave front was adjacent to the
front boundary of the cavity (xf = x1). The calculations were performed for air and graphite particles. It was
assumed that the disperse and carrier phases in the cavity at the time t = 0 were in thermodynamic equilibrium
under normal conditions (p0 = 0.1 MPa and T10 = T20 = 293 K). The particle diameter was d = 60 µm and the
mass fraction of particles in the cavity was m2 = ρ20/ρ10 = 1.

Note, depending on the ratio k = l/h, there are two flow structures: open and closed. When the parameter k
exceeds a certain critical value k∗, the flow becomes attached to the bottom of the cavity (closed structure). For
k < k∗, a single zone with a circulation flow is formed, i.e., an open structure is observed. In the case of a steady
supersonic flow around the cavity, we have k∗ ≈ 10 [4]. In the case considered, the calculation results correspond
to the open structure.

Figure 2 shows the field of the velocity vector of the gas at different times. At the times t = 0.25, 0.5, 1, and
2 msec, the shock-wave front is located at a distance from the back edge of the cavity approximately equal to h,
3h, 7h, and 14h, respectively. At first, when the wave front passes along the cavity, the gas enters the latter with a
high velocity. A vortex flow is formed inside the cavity. When the wave goes far ahead, the gas pressure above the
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Fig. 3. Distributions of particle density (a) and pressure (b) on the bottom of the cavity for t = 0.25
(1), 0.5 (2), 1 (3), and 2 msec (4).

cavity is not very high because of the wave unsteadiness, and the gas moves from the cavity to the main flow region
due to the transverse pressure gradient (Fig. 2c). A weak secondary shock wave is formed above the cavity. By
the time t = 2 msec, a complicated vortex flow is formed above the cavity; near the surface behind the back edge
of the cavity, the gas flows in the direction opposite to the wave-front motion and again enters the cavity where a
rarefaction region has been already formed (Fig. 2d).

The distribution of the dimensionless reduced density of the disperse phase ρ̄2 = ρ2/ρ10 over the bottom of
the cavity at different times is shown in Fig. 3a. At first, when the gas accelerating behind the wave enters the
cavity with a high velocity, the particles move downward under the action of the gas; thus, the zone occupied by the
disperse phase is compressed and the particle density significantly increases. In particular, by the time t = 0.5 msec,
the particle density on the bottom near the front wall is almost 1.7 times higher than the initial value. Note that
the distribution of ρ̄2 is nonmonotonic at this time (there are two characteristic maximums near the front and back
walls). Later in time, being entrained by the gas flow directed away from the cavity, the particles leave the latter
and rise to a significant height. Their density inside the cavity considerably decreases. At the times t = 1 and
2 msec, the density of the disperse phase on the bottom near the front wall of the cavity is significantly higher than
that near the back wall (curves 3 and 4). By the time t = 2 msec, the disperse phase almost completely leaves the
cavity.

Figure 3b shows the pressure distribution on the bottom of the cavity. At the time t = 0.25 msec, the
pressure on the bottom is essentially nonuniform, and it is much higher near the back wall than near the front wall.
At later times, when the wave front goes far away from the cavity, the pressure on the bottom is almost uniform
and, by the time t = 2 msec, it is approximately equal to the initial pressure in the undisturbed gas.

It should be noted that the pressure distribution on the bottom of the cavity in the unsteady case is
qualitatively different from the distribution in a steady flow. In the case of unsteady interaction of the shock wave
with the cavity, the pressure on the bottom is everywhere higher than the pressure in the undisturbed gas p0,
whereas a steady flow has a sector behind the front wall where the pressure is lower than p0 [3, 4].

Thus, it was found that, as the shock wave passes above a dusty cavity, the dust cloud is strongly compressed
first under the action of the gas flow entering the cavity. After a certain time (when the wave goes far ahead), the
dust particles entrained by the gas flow caused by the transverse pressure gradient rise upward and leave the cavity.
A vortex gas flow is formed inside the cavity during a certain time period. In contrast to a steady flow, however, it
is transformed into an upward flow with time.
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